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1 Introduction

In designing, analyzing, and understanding high-energy-density (HED) physics experiments, in-
cluding inertial confinement fusion (ICF) experiments, we must contend with the extension of
hydrodynamics to new regimes where additional physics, such as radiation transport and nuclear
reactions, become important and coupled to the dynamics. Our most sophisticated models and
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understanding are based in classical, low-energy physics, since that is what we have the easiest
access to creating and diagnosing. To assess our extrapolation of that understanding to the HED
regime will require comparable precision in experiments and measurements. This is particularly the
important in the case of hydrodynamic turbulence — most experiments are designed with one or
two dimensions of symmetry, but at small scales hydrodynamics is generically observed to crumple
into a fine structure of apparently random, three-dimensional eddies.

This problem of turbulence has been studied for over a century in classical systems, and HED
hydrodynamics experiments are just beginning to study turbulence in its own regime. Practical
computations of turbulence are difficult to perform in their own setting, as this would make it
impossible using the symmetries which were designed into the experiment to simplify the analysis.
For this reason, reduced models are often employed, including the Reynolds-Averaged framework,
which transport moments of the fine structure instead of attempting to evolve the fine structure
itself. To do this, these models rely on an assumption of sufficient universality, that all such
turbulent systems will behave in statistically similar ways. This allows model parameters and
constants to be set from one experiment to another. It is believed that hydrodynamics in the HED
dense-plasma regime will continue to exhibit links to the universality of traditional experiments, but
convincingly demonstrating this will require high precision measurements indicating that turbulent
scalings continue to arise as predicted even as plasma and radiation physics begin to become
important.

In order to make these comparisons, it will be necessary to move beyond measurements of
the coarsest observables of the mix models, and toward measuring some aspects of the fine scale
structure itself. The coarsest scale, and also the most common classical observable, is the mix
width, which is to say, given a hydrodynamic instability between two materials, the extent of the
mixing which is induced. This has the advantage that it manifests at the bulk flow level, growing
to scales much larger than any of the fine motions which drive it. Its disadvantage, however, is
that many different combinations of small scale evolutions could give rise to the same mix width,
making it unsuitable for discriminating between different model physics. For example, one could
imagine slower, larger eddies driving overall mix widths to the same scale as certain faster, smaller
ones, but which respond differently if the layer is then subjected to a sudden change in acceleration
or a shock wave. Unfortunately, such dynamic processes are ubiquitous in HED/ICF physics, so
confirming the model is evolving to the right bulk end state for the right reason is a necessity.

Confirmation of the smaller scales in HED is most likely to come from probing the density or
concentration structure of the flow. This is in contrast to the classical situation, which traditionally
deals with single fluid systems, and in which it is easiest to make measurements of the velocity
field. In HED, nearly all experiments involve interfaces of different materials, and probing the
velocity regime at small scales is made difficult through the combinations of high density and
bright self-emission of the plasma environment. The density field, in contrast, can be probed by
the transmission of x-rays through the experiment, capturing differences of transmission and opacity
and relating them to the properties of the constitutive materials. So, while in classical turbulence
studies it was the statistics of velocity which were most often used to confirm or disprove models
at the higher order — and in particular the variance of velocity, which can be interpreted as the
energy — in HED physics we must use the statistics we can gather from the density field. Similar to
the role of energy in the velocity field, we will find that the physics are controlled by a variance-like
moment, called b, which represents the overall response of hydrodynamic gradients to the density
field at all scales. Measurement of this b parameter allows us to distinguish between model dynamics
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at finer scales, but as will be discussed below, care must be taken to define the measurement and
to appropriately separate it from the background noise or bulk features. Doing so, however, gives
us a new look into the microphysics of HED turbulence, and the ability to begin to assess at new
scales whether or not it continues to follow classical relations. This in turn can alert us if new
physics makes a transition to new regimes of evolution.

2 Background

The work in this manuscript builds on theoretical techniques developed in Kurien et. al. [1]
for extracting density fluctuation information and calculating b from HED radiograph, and demon-
strated the technique on sample data from the LANL NIF Shear Kelvin-Helmholtz (KH) instability
experiments.[2, 3] The theoretical work examined the efficacy of calculating an approximation of
b in line-integrated data, such as radiography, which inherently averages over density fluctuations
along the integration length. Kurien assessed the approximation of b using high-resolution Direct
Numerical Simulations (DNS) of variable density bouyancy-driven turbulence, and found that the
assumed mixing region thickness was a dominant effect on the goodness of the approximation, with
the goodness decreasing with larger region thickness. The application of the method to the Shear
data was able to identify b signatures from large features in the flow, such as the large KH roll-ups,
even with the mixing layer expanding along the radiography axis. The method works because
those features are on order of the thickness of the mixing layer at all times, since the large features
actually dictate the width of the layer.

While the method was able to see large features in the Shear data, we can improve on the
b approximation by constraining the mixing region thickness such that more small scale mixing
features are on the order of the region thickness. In this manuscript we will demonstrate our ability
to measure b in the NIF thin-layer Mshock experiment, where the Mshock target is specifically
designed using a small thickness tracer strip to resolve more small-scale density fluctuations with
the radiography. The tracer strip is embedded in a mass-match surrounding material so it does
not experience expansion along radiography axis, unlike the Shear experiment. This tracer design
allows for initially small-scale mixing features to evolve to detectable scales without being obscured
by layer expansion. Since the Mshock b analysis can resolve smaller-scale features that the previous
work, this necessitates significantly more care in the image processing before calculating b than
previously developed.

We examine the formulation of b in Sec. 2.1, setting up the context for later use in our calcula-
tions. We then give and overview of the NIF thin-layer Mshock platform in Sec. 2.2, before moving
on to the requirments for quanitative radiography while preserving small-scale features in Sec. 3,
methods for calculating b in Sec. 4, and results from the thin-layer data and simulations in Sec. 5.

2.1 Definition of b

The variable b = −〈ρ′v′〉 is a second-order Reynolds-averaged quantity. It describes the coupling
between mass flux and pressure gradients in the system. Below, we will show how it emerges.

Beginning from the Euler and continuity equations,

DU

Dt
= −1

ρ
∇P (1)
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and
Dρ

Dt
= −ρ∇ · U (2)

we introduce the Reynolds decomposition

U → ū+ u′, ρ→ ρ̄+ ρ′, P → P̄ + P ′.

We also introduce the special variable v = 1/ρ as the specific volume. This has the important
property that while v is defined as the inverse of ρ, we find in general that

1

v̄
6= ρ̄, and

1

v′
6= ρ′.

The mass flux vector 〈u′ρ′〉 describes the motion of density by turbulent fluctuations — it
contains information on if mass is correlated with motion leading to transport on net. To get an
equation for 〈u′ρ′〉, a weighted copy of Eqn. 1 multiplied by ρ′ is used. The r.h.s. becomes

Dρ′u′

Dt
∝ −ρ′v∇P = −ρ′v′∇P̄ − ρ′v̄∇P ′ − ρ′v′∇P ′

where other terms are omitted to focus on the coupling to pressure. When averaging is applied,
the r.h.s. contains

−〈ρ′v′〉∇P̄ ≡ b∇P̄ .

This defines the b in what appears to be a second order quantity. Consider though expanding the
definition of v and averaging,

ρv = 1 (3)

(ρ̄+ ρ′)(v̄ + v′) = 1 (4)

ρ̄v̄ + 〈ρ′v′〉 = 1 (5)

b = −1 + ρ̄v̄. (6)

In this way, we can write b as encoding the difference between ρ̄ and 1/v̄.
Since v′ = v − v̄, and the constant part v̄ does not contribute to the average, b can also be

written as

−b =
〈
ρ′v′
〉

=
〈
ρ′v
〉

=

〈
ρ′

ρ

〉
. (7)

This provides yet another interpretation of b, as the ratio of the fluctuating part of the density
to the instantaneous total. It is not as obvious why b is intrinsically positive in this form, but we
can understand it as follows: when ρ′ is negative, ρ is smaller, and the overall ratio is greater than
when ρ′ is positive. This drives the average to be negative on net, so that b is positive.

Expanding the denominator into ρ = ρ̄+ ρ′, we can expand by the binomial series as

−
〈

ρ′

ρ̄+ ρ′

〉
=

〈
−ρ
′

ρ̄
+
ρ′2

ρ̄2
− ρ′3

ρ̄3
+ . . .

〉
=

〈
ρ′2
〉

ρ̄2
−

〈
ρ′3
〉

ρ̄3
+ . . . (8)
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This gives an interpretation of b as the alternating sum of all moments of ρ′, leading with the
variance, the relevant quantity for impacts of atomic mix. Since the first-order single-primed
quantity is eliminated by the average, the series can be resummed from the variance onward, to get

b =

〈
ρ′2

ρ̄ρ

〉
.

This expression can be found in the original BHR papers [4] — many other expressions relating b
to moments of density can be found in Ristorcelli et. al.[5].

Since b represents the coupling of mass flux to pressure gradients, there is significant practical
importance in knowing the initial b0 of a static interface. Interpreting the interface as a region in
which two materials ρ1 and ρ2 are equally likely to be found by checking a random point (or, in
terms of ensembles, that a given point is equally likely to be either material under different random
realizations of the interface), we can make the definitions

ρ̄ =
1

2
(ρ1 + ρ2),∆ρ =

1

2
(ρ2 − ρ1)

so that ‘fluctuations’ ρ′ are only into one or the other pure material states,

ρ′ = ±∆ρ.

From one of our earlier definitions of b, applying the concept that we are equally likely to see either
of the pure materials, we can explicitly evaluate the average as〈

ρ′

ρ

〉
=

1

2

∆ρ

ρ2
− 1

2

∆ρ

ρ1
= −∆ρ2

ρ1ρ2
.

In terms of the Atwood number of the pure materials,

A ≡ ρ2 − ρ1

ρ2 + ρ1
=

∆ρ

ρ̄
,

this can be written as

b =
A2

1−A2
.

We can generalize this to unequal fractions of the materials,

−b = p
ρ2 − ρ̄
ρ2

+ (1− p)ρ1 − ρ̄
ρ1

, ρ̄ = pρ2 + (1− p)ρ1

or

b =
(1− p)pA2

4(1−A2)
. (9)

Most second-order models containing a b-like term use a constitutive equation like Eqn. 9 to define
b algebraically. The BHR family of mix models, in contrast, uses an evolution equation derived
from Eqn. 6 and two copies of the continuity equation,

Db

Dt
= ρ̄

Dv̄

Dt
+ v̄

Dρ̄

Dt
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to derive
Db

Dt
= −1 + b

ρ̄
∇ · 〈u′ρ′〉 − ρ̄∇ · 〈u′v′〉+ ρ̄〈v′∇ · u〉. (10)

In order to close Eqn. 10 into a usable form, several terms are parameterized and replaced,

Db

Dt
= −1 + b

ρ̄
∇ · 〈u′ρ′〉+ ρ̄Cb2∇ ·

(
νT∇

1 + b

ρ̄

)
− Cb1

√
k

s
b. (11)

As with any turbulence model equation, each term in Eqn. 11 must be validated. Parameters Cb1
and Cb2 have been introduced, which parameterize decay and transport of b, respectively. Under
assumptions of universality, they have been calibrated against high resolution simulations, but it
is essential to test these values against real world events.

In order to evolve an interface through multiple hydrodynamic events, an initial inventory of b
must be created and then propagated. This involves both correctly assigning b0 to an interface by
something like Eqn. 9, and then evolving it by an equation like Eqn. 11. Modeling choices and free
parameters exist in this process, and are important to understand due to their essential nature in
determining how one state of evolution leads to another, or to subsequent impacts of mixing.

Figure 1: Comparison of the initial values for density variance 〈ρ
′2〉
ρ̄2

= A2 and b0 = A2

1−A2 . These
initial condition values, expressed for equal volume fractions of a heavy and light material, agree
at low Atwood number, but show increasing divergence above A > 0.5.

2.2 NIF thin-layer Mshock platform

The NIF thin-layer Mshock platform is a laser-driven shock-tube experiment examining feed-
through of Richtmeyer-Meshkov instability growth across a thin-layer under shock-reshock condi-
tions. In this manuscript we will expand on the description of the platform previously documented
in Desjardins et al. [6], concentrating on target component details necessary for our data analysis
technique and new perturbation specifications. We image the system with a big-area backligher
(BABL) [7, 8], using either a Ni or Zn foil BL, which we will discuss in details in Sec. 3.2.1.

The NIF thin-layer Mshock target is shock-tube driven on both ends by gold halfraums, as
shown in Fig. 2(a), launching two counter-propagating shocks into the system. The shock tube is
constructed in three pieces, a thin Be tube with a thick window region, and two fluorinated plastic
(CF) casing caps (Fig. 2(b)). The three-piece construction is necessary to meet NIF limits on Be
mass per target, while still keeping the tube thick enough to contain the pressure of the colliding
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Figure 2: (a) Schematic the Mshock target including laser drive and BABL. (b) Target physics
package drawing including component materials and dimensions. (c) Tracer disk specifications
including materials, dimensions, and carrier wave perturbation.

shock long enough for significant post-reshock growth. The Be window allows us to maintain good
image signal and contrast even with the thick tube.

Inside the shock-tube is a physics package consisting of two low-density, 100 mg/cc CH foams
surrounding a solid-density plastic disk. The disk consists of a thin tracer strip, composed of CH
with 3% atomic Iodine doping at ρ = 1.4 g/cc, and is surrounded by mass matched polyamide-
imide (PAI) at ρ = 1.44 g/cc (Fig. 2(c)). The tracer disk materials were chosen such that the CHI
has a significantly higher opacity than the surrounding PAI material, so that our radiography can
resolve density fluctuations in the CHI layer. The tracer layer is perturbed on the interface facing
the first shock, and is flat on the other interface. The perturbation is a single-mode sine wave with
A = 4 µm (peak-to-valley) and λ = 150 µm with or without added surface roughness. We designed
the experiments to study the effect of small-mode surface roughness on interface mix and mode
feed-though across the tracer layer. We examined two different roughness initial conditions (Fig. 3),
in addition to smooth initial conditions to serve as a null case for comparison. The two roughness
conditions are limiting cases of Anoise � Acarrier and Anoise � Acarrier, where in both cases all
roughness modes have λnoise � λcarrier such that there are many roughness modes over one carrier
wavelength. We also vary the disk thickness between either 80 µm or 120 µm in order to study how
mode feedthrough depends on layer thickness. Due to the geometry of the tracer layer this sets
up a dichotomy between ‘large’ scales which are on the order of the layer width, ∼ 100 µm, and
‘small’ scales which are on the order of the initial surface perturbation amplitudes, ∼ 10 µm. Due
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Figure 3: (a) Sample line-outs from experiment of the (a) low-roughness initial condition, Anoise �
Acarrier, and (b) high-roughness initial condition, Anoise � Acarrier.

to the resolution limit of the imaging, which is ∼ 20 µm, the measurable small scales are effectively
20–50 µm in size. We will use this nomenclature throughout the rest of the report. Figure 4 shows
pre-shot radiographs of the target using a band x-ray sources. From these radiographs we can see
both the relatively high opacity of the CHI tracer layer compared to the surrounding materials,
as well as the density uniformity of the target components. In both the target side-view and the
end-view any small-scale variations in the CH foam and PAI disk regions are at the level of the
image noise.

The shocks are driven with an indirect drive 10 ns duration reverse-ramp pulse with a ∼ 250 eV
halfraum temperature. We launch a shock from the bottom of the tube first, and 3.5 ns later we
launch a shock from the top of the tube. The tracer layer is initially offset ∼ 600 µm away from
the target center, toward the first shock in order to allow for 6 ns of growth time between the 1st
and 2nd shocks impacting the tracer layer, and placing the layer in the center of the Be window
post-reshock. The post-shock growth time interval is between 16.5–22.5 ns relative to first shock
generation (laser turn-on), and the reshock time interval is effectively 22.5–27 ns, ending when the
ablator remnants begin to interact with the mixing layer.

3 Methodology for HED quantitative radiography

The largest challenge of measuring ‘b’ in our experiments is converting our radiographs into material
density maps, and removing diagnostic artifacts like noise while retaining important image features
from which we can diagnose mix. We have developed a quantitative radiography method for our
HED hydrodynamics experiments, and have implemented it for the NIF thin-layer Mshock data.
In this section we will lay out a methodology for converting x-ray radiographs to density maps, and
demonstrate the finer details of the process on our NIF data. As illustrated in Fig. 5, the steps of
the quantitative radiography method are:
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Figure 4: Pre-shot target radiographs both (a) edge-on to the CHI tracer strip and (b) down the
axis of the shock tube.

1. Remove noise from the image

2. Remove other notable diagnostic/experiment geometry artifacts from the image

3. Convert the image to a transmission map by calibrating to a known transmission fiducial

4. Convert transmission information to a density map using information about target material
geometry and opacities.

In Section 3.1, we discuss the effect of filtering on image features and compare how well various
filter methods retain small-scale information. Then in Section 3.2 we discuss converting the filtered
image to a transmission map, where in the analysis of the NIF data, we perform both steps 2
and 3 in tandem, since the large BL area and the complicated shock density profiles in the foam
mean that we potentially have two variation sources on the same scale. Closing our discussion
of the quantitative radiography methods, in Section 3.3 we discuss the target considerations and
assumptions by which we convert a transmission image of the mixing layer to a density map.

3.1 Filtering and small scale fluctuations

Any form of density fluctuation analysis that does not resolve beyond the smallest scale of density
fluctuations will be sensitive to signal filtering. Noise in the data typically appears at the smallest
spatial or temporal scales of the diagnostic instrument, and these additional contributions to the
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Figure 5: Illustrative flowchart of the quantitative radiography method used in this manuscript,
by which we convert the initial x-ray image into a density map through denoising, flattening,
calibrating transmission, and applying material and geometry assumptions to create a density map.
The process is depicted for a representative image from the NIF MShock thin-layer experiments.

observed signal alter the characteristic scale at which fluctuations can be accurately resolved. Thus,
if we want to identify small-scale density fluctuations we must ensure a sufficiently large signal-
to-noise ratio at scales small enough to resolve the desired density fluctuations, or we must apply
some form of filtering to reduce this noise and improve the fidelity of the data. However, any filter
we apply affects not just the noise, but the underlying real signal as well.

Experimental HED x-ray images are subject to noise, a result of electronic noise contributions
at the CCD pixel scale of the camera and at the cell-scale of the camera’s micro-channel plate
(MCP) due to fluctuations in the quantum response of the MCP cells and CCD pixels to incoming
photons. The cell-size of the MCP is slightly larger than the pixel size of the CCD, so that sets
the scale of the camera noise at the MCP cell-size on the order of 10 µm. We expect the evolving
instabilities to possess density fluctuations at scales equal to and smaller than the camera noise,
since if we assume a turbulent cascade at Reynold’s number of 105–107 typical in HED systems
and a driving scale at the ∼ 100 µm perturbation length, that would put the dissipation scale at
0.1–10 nm. In turbulent systems the relative amplitude of the density fluctuations get smaller with
smaller scales, making it hard to keep a high signal-to-noise at both large and small scales.

In HED hydrodynamics experiments this challenge is increased, since we both need to measure
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density fluctuations over a broad range of scales, roughly the same order of magnitude as the
Reynold’s number, and our images are subject to multiplicative noise. Multiplicative noise means
that the noise fluctuation that shows up on an individual MCP cell is multiplicatively dependent
on the incoming signal to that cell, such that the final signal at that cell, Sf , is given by

Sf = S0(1 + P (µ, σ)) (12)

where S0 is the initial signal and P is the probability density function of the noise at that cell,
with mean value µ and standard deviation σ. Thus, if the incoming signal is large then the noise is
large, and if the incoming signal is small then the noise is small. In contrast, additive noise, which
is typical to many imaging systems that don’t have an amplifier like an MCP, does not depend on
the incoming signal. Instead additive noise has the form

Sf = S0 + P (µ, σ). (13)

In systems with additive noise it is fairly straightforward to design a measurement with high signal
to noise at all scales, but it is more difficult to design something similar for multiplicative noise.
Since we cannot rely on high signal-to-noise in our images, instead we must find a way to remove
the noise.

Signal filtering is the primary way to remove diagnostic noise, and filter choice for denoising is
an important consideration for retrieving quantitative information, as all filters will also have an
effect on the natural variation in an image. No general filtering method can be expected to remove
only the diagnostic noise while retaining the native entropy of the true image, often leaving us
with the choice to over- or under-filter an image. Some filtering methods, like Gaussian smoothing,
uniformly reduce the power of both the signal and the noise in an image by smoothing the entire
image. Smoothing filters thus often over-filter the image, since they remove not just the noise but
density fluctuations below the chosen filter size as well, impairing further analysis by causing an
under-estimate of the density fluctuations. On the other hand, under-filtering an image can be
just as deleterious, or perhaps moreso, because if a non-negligible amount of noise remains after
filtering, we may over-estimate density fluctuations. An example of under-filtering an image would
be to employ a Fourier filter, but only remove structures at the pixel size in the image and leave
the larger MCP noise. In practice, no generalized denoising method will be perfect, but we can
make a choice of filter by examining what information each filter retains.

3.1.1 Filter comparison

In this section we compare the effects of two different filter types on the thin-layer NIF data and
discuss our considerations for choosing the filter we use for the rest of the report. We consider a
wavelet filter at multiple scale sizes, and an adaptive non-local means (ANLM) filter. The effects
of these filters on an example image are displayed in Fig. 6. Note that we have opted not to
include the Gaussian filter, for the reasons described in the previous section. There are of course
significantly more imaging filtering methods available, each with their own pros and cons for noise
removal applications. We want a filter that can preferentially filter variations in an image caused
by noise while preserving information from physical features; the filter should also be able to handle
multiplicative noise. Hopefully the discussion of our considerations for noise filtering methods can
serve as a guide for a reader adapting this method to their own experiments.
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Figure 6: Examples of image filtering of the NIF Mshock thin-layer data using both wavelets with
different thresholding and an adaptive non-local mean filter. All filtered images are normalized.
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The wavelet filter is essentially a more generalized spectral decomposition filtering method than
simple Fourier filters, in which we specify the shape of the decomposition function, and which
allows us to assume information about both noise scale and a characteristic noise shape. The
identification of noise shape is due to the limited spatial extent of the wavelet basis vectors chosen
for the decomposition, in contrast with the infinite spatial extent of the periodic functions used in
standard Fourier analysis. It is best practice to choose a wavelet form similar to the structures we
are trying to identify, so we want a wavelet shape similar to a single MCP grain which is basically
a non-periodic, isotropic circle. We choose to use a single-peak gaussian-type wavelet, specifically
a two-dimensional isotropic second-derivative of a Gaussian (the so-called Mexican Hat) wavelet,
which we can call as “mexh” from the MATLAB library, which has the form

ψ̂2D(ω||, ω⊥) = −2π(ω2
|| + ω2

⊥)e
−s2(ω2

||+ω
2
⊥)/2

, (14)

where s is the scale size, and ω|| and ω⊥ dictate the contribution to the output spectra from
how well the parallel and orthogonal components of the signal match the wavelet form. Wavelet
filtering is similar to traditional Fourier analysis, where we create a wavelet spectrum of the image
by decomposing the image using the specified wavelet basis function (Eqn. 14), after which we can
reconstruct a filtered image using only lower-frequency/larger-scale components of the transform.
The amount by which we filter the image depends on which small-scale components we exclude.
Fig. 6 shows three examples of wavelet filtering on the same NIF thin-layer image using different
filtering levels, where we exclude progressively more small-scale features, from scales < 5 pixels to
scales < 20 pixels.

The second filter we consider is an adaptive non-local means (ANLM) filter. NLM filtering was
first presented by Buades et al.[9] in 2005, and uses the inherent self-similarity of features within an
image (or within a stack of images) and a similarity-based weighting scheme to remove noise from
an image. The NLM approach is able to preserve edges and contrast while removing statistical
noise, and is able to do this without an underlying assumption about the structure of the image
noise, but an assumption of self-similarity of features within the image to restore features that may
be otherwise marred by noise. The noise of any pixel is reduced by first calculating the similarity
between the neighborhood of pixels around the target pixel and neighborhoods of non-local pixels
across the rest of image, and using these similarities to generate a new pixel value from the weighted
mean of the compared pixels.

The NLM filter typically has three variables, the search window size SW , the neighborhood
or comparison window size CW , and the smoothing parameter h. The search window defines the
region of neighborhoods in the image around each target pixel to be considered for filtering the
target pixel. The comparison window is the size of the neighborhoods N(i) around any pixel i which
we compare to determine the weighting. Lastly, and very importantly, the smoothing parameter
h determines the amount by which the target pixels are altered. In general, as the smoothing
parameter is increased, the NLM filter approaches the limit of a median filter the size of the
comparison window, over-filtering the image. In order to provide optimal noise reduction across an
image with spatially varying noise, as is the case with multiplicative noise, our adaptive-smoothing
implementation estimates the smoothing parameter as the standard deviation of the signal within
a target pixel’s neighborhood.

Put simply, the NLM filter acts on the signal of a pixel i, Sf (i), as

NLM(Sf (i)) =
∑
j∈SW

w(i, j)Sf (j), (15)
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where NLM is the filter operator, v(i) is the value of the noisy pixel i, j represents the pixels with
which we are comparing neighborhoods within the search window SW , and w(i, j) is the weight of
pixel j in the filter, and we sum over the weighted nonlocal pixels to get the filtered pixel value.
The weights are primarily determined by the mean Euclidean distance between all pixels v(Ni)
and v(Nj) within the neighborhoods around the target pixel v(i) and around any other pixel v(j)
within the search window. This process is done for each pixel of the image. The parameters used
for this data set are SW = 61, and CW = 11.

We can compare the suitability of each filter for preferentially removing image noise by compar-
ing both what information is retained (filtered images) and what information is removed (residual
images) by the image filter, as shown in Fig. 6. The wavelet scale > 5 filtered image is under-filtered,
retaining almost all of the original information and the image noise. If we look at the corresponding
residual image, we see that very little information is stored at those small scales. Instead, the image
noise occurs at larger scales, so we need to increase the scale threshold of the wavelet filter. At
wavelet scale > 10 noise is still present but is beginning to be suppressed, showing smaller signal
variations than the less filtered image. This noise is still most apparent in the high-transmission
background foam region of the image due to the multiplicative nature of the noise. The residual
at wavelet scale > 10 shows that the filter is removing more information, and is also beginning
to show a clear signal from the mixing layer, indicating that it might be beginning to remove real
mixing information in addition to noise. To make this easier to see, we also include images of the
noisy image divided by the filtered image. In this representation the mixing layer information is
more prominent and seems to be showing some periodic structures, which further indicate that we
are removing real mixing information. If we continue to increase the filtering up to wavelet scale
> 20, we can completely remove the background noise but now we also are removing a significant
amount of the real information from the mixing layer. Not only is the blurring in the filtered image
beginning to fill in the sine wave on the layer, but we can see that periodic structure information
prominently in the residual images. So with the wavelet filter, there is a clear judgment we have
to make about the balance between noise removal and losing mixing information.

In contrast, the ANLM filter gives us better noise removal with small loss of real mixing signal.
We can see in the filtered image that the noise is suppressed across the entire image, while the
edges of the fiducials and the mixing layer have still been preserved. In the residual images we
do see some signal has been removed from the center of the mixing layer, but the residual layer
is thinner than the filtered image, indicating that the mixing signal at the layer edges should be
intact despite some minimal loss in contrast within the layer.

Because the ANLM filter is able to preferentially remove noise while preserving edges, all further
image analysis in this manuscript uses the ANLM filter.

3.2 Flattening and converting images to transmission maps

Once we have a filtered image, the next step is to remove other diagnostic effects. In our case, that
means removing large-scale intensity variation caused by the backlighter (BL) irradiation profile
that could be incorrectly interpreted as a density feature later in the analysis. To remove non-
uniform backlighter irradiation, we must first estimate the BL profile. In systems which have a
highly localized mixing layer surrounded by regions of fairly uniform intensity, we can assume that
any large-scale intensity variations within the background regions are caused by the BL, thus, a fit
to the background is a fit to the BL. This assumption mainly holds true when the target background
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materials are highly transparent compared to the mixing-layer material.
However, the complicated shock profile of the thin-layer Mshock experiments causes the regions

surrounding the mix layer to be highly non-uniform. In these experiments the background region
is comprised of foam regions at different shock states and also remnants of the ablator within the
field-of-view, each with different transmission. Because of these non-uniformities, assuming that
all large-scale variation is due to the BL would also remove material information from the image,
information we need for calibrating the image when transforming it into a transmission map. We
instead must model both the backlighter profile and the material properties and combine them to
remove unwanted intensity variations in the image, convert the image into a transmission map, and
isolate the mixing layer.

If we have enough information about the sources of background variation, we can distinguish
between them and just remove our diagnostics effects. In the thin-layer Mshock data the density
features have morphology distinct from BL variation, where the density features are discrete layers
orthogonal to the flow/parallel to the mixing layer. In contrast, the BL variation is continuous
and originates from intensity variation due to uneven overlap of elliptical laser beams on the BL
foil. So BL variation has no large density jumps and roughly elliptical structures, if there are any
notable structures smaller than the image size. Since the background density features and the BL
features are so different, we should be able to deconvolve the two. While there may be a way
to deconvolve the features just based on descriptive morphology and analysis of the image alone,
we take advantage of our ability to simulate the BL and the evolving flow density features in the
system in order to create a model for the deconvolution.

We use the same simulated flow information of background material and density to convert
the image into a transmission map. If we know the composition and density of a material layer,
we can use the opacity of the material and target geometry to calculate the transmission through
that layer. From the transmission we can calculate a conversion constant from camera signal level,
’counts’, to transmission, and then use this constant to convert the values of the entire image to
transmissions. Since we use the same material information to both remove the BL variation and
calculate the transmission map, we do both processes in tandem. This has the added advantage
that we can use constraints on the calculated BL profile, such as continuity, to feedback experiment
information into our model and improve the assumed material densities.

The steps for removing diagnostic effects and converting the image to a transmission map are:

1. Model the BL (diagnostic) variation

2. Model the background material variation

3. Iterate between the data and combined models to remove the BL and improve the background
material model

4. Calculate a transmission to counts conversion constant and convert the image to a transmis-
sion map

We address each of these steps in the following sections.

3.2.1 Backlighter emission model

For the thin-layer Mshock experiments we use a Big-Area Backlighter (BABL)[7], developed at
LANL, which is irradiated by 20 laser beams which are tiled both spatially and temporally, and
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Figure 7: (Left) Visrad model of the Mshock thin-layer target with drive and BL beams, and
sample data image. (Right) Same model showing only the BL and the on-target laser intensity,
with an inset plot of the laser intensity profile in the data field-of-view.

because of the complexity of the laser irradiation pattern we cannot assume a priori the uniformity
or large-scale structure of the BL illumination. The initial area BL design prioritized illumination
uniformity over a significant area at the image center, but we require our BL model to establish
uniformity specifications and a form for both the axial and radial fits for data away from the image
center. To do this, we model the laser energy deposition on the BL in Visrad, a geometry modeling
and simulation program used to design laser experiments on large laser facilities like the NIF. Fig.
7 shows the solid model of the target and backlighter in Visrad, with the incident laser beams
outlined, on the left, and the estimated laser irradiation profile on the right. For our data analysis
we focus on the simulated BL illumination profile within the target Be window for calibration, and
use a smaller region centered on the mixing layer to fit the BL profile far from the window edges.

In this section we determine the general BL profile in the axial and radial directions. We show
that the radial variation is small enough that a radial correction can be neglected, so only the axial
BL profile will be used to calculate the transmission calibration. The radial profile is added as a
small correction in the final mixing-layer density map before calculating ’b’.

We characterize the axial variation of the BL in a region spanning the entire length of the Be
window, but localized to around the center axis of the tube. We span the length of the tube in order
to access as many material layers as possible for the final calibration. In contrast, we center the
window around the tube axis since that is where the total signal variation due to target curvature
is small. Another advantage to spanning the length of the Be window is that the fit we determine
will be applicable to all data, even as the layer moves down the axis of the target. The axial fit
window, as shown in Fig. 7 and Fig. 8, is 2 mm high and ≈ 0.670 mm wide containing ∼ 200 pixels.
The transmission of the target due to the Be tube curvature should vary by < 1% across the radial
span of the window, from T = 0.85 (using Be cold opacity) at the tube center to T = 0.845 at the

17



edge of the window. The transmission of the foam varies by < 2.2% across this same span, from
T = 0.61065 at the tube center to T = 0.62405 at the edge of the window, where the maximum
variation is calculated using cold opacity for 500 mg/cc CH foam (the highest average region density
in the 1D xRAGE simulations). The target component transmission profiles are discussed in more
detail in Sec. 3.3. Because the variation in transmission from material properties is so small, we
can reasonably expect that most of the variation in the data within this fitting window will be due
to the BL profile.

Fig. 8(a), shows the model BL profile, including the variation within the fitting window, and the
radially averaged profile. In the late-time data region, shown in the black dashed box, the variation
of the BL profile is very small, ∆IBL < 2%. However, the profile does show more variation at the
edges of the fitting window, up to 6%, which is applicable to some of the very early-time data, but
more importantly is within the region used for the transmission calibration. A radial average of the
emission produces a fairly smooth profile, which we can fit well with a 4th degree polynomial. This
model shows that the BL profile is continuous and only exhibits emission variations over length
scales much larger than those expected to be due to material properties.

We characterize the radial BL variation in a similar way, but since the radial BL is not used in
calculating the transmission constant we only need to look at the radial variation in the smaller,
final mixing layer image regions. We examine the radial variation in the regions of the mixing layer
images later used to determine the center position of the tube for calculating mixing layer density.
These regions span from the left (1st shock) edge of the image in ∼ 150 µm. If we make the data
fitting region any wider, we risk including tracer layer material and contaminating the fit. Fig. 8(b)
shows the model BL profiles at the fitting region used in the data and the BL variation in those
regions. In all the fitting regions the variation is extremely small, < 1.5% across the entire region.
We will discuss this further in Sec. 3.3.

3.2.2 Background material model

Because the materials in the thin-layer experiments are shocked multiple times from different di-
rections, the dynamic density profiles of the flows are complicated, with multiple density layers
present in the background foam. The density layers partially arise from different shock states of
the foam regions, with some regions at higher density after being shocked once, other regions at
twice-shocked densities, and still other regions that are decompressing post-shock. Other density
variations arise due to the long growth time required between shock and reshock of the mixing
layer, providing enough time for remnants of the ablator to enter the field of view.

We use xRAGE to simulate the full system density profiles, and then model them as a reduced
number of discrete density layers for the transmission calibration, as shown in Fig. 9. We choose
to divide the region inside the Be window in each image into one to four discrete material regions.
These regions correspond to sections of relatively flat density behind or in front of a shock feature.
We exclude a 400 µm region around the mixing layer, shown in red in Fig. 9, since we are using
this method to calculate the experimental mixing layer density — including assumptions about the
layer density would bias the density calculation. In each region, we initially assume the average
density from the xRAGE simulations, rounded to the nearest 100 mg/cc as shown in Table 2. We
later refine the density assumptions using the continuity of the BL fit.

The discrete density-layer model is based on the low densities and corresponding low opacities of
the CH foam and the CH+3% Si ablator remnant. The CH foam density ranges from ∼100 mg/cc
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Figure 8: (a, Top) Visrad model of the BL emission map, shown as log(Ilaser), including boxes
denoting the region used for the axial fit, and the later-time mixing layer region. (a, Middle) Map
of the percentage emission variation in the fitting region. (a, Bottom) Plot of radially averaged
BL emission, including a polynominal fit to the profile. (b, Top) Visrad emission map, with black
boxes denoting the radial profile fitting regions used in the data mixing layer images as the layer
moves in time. (b, Bottom) Corresponding maps of the percentage emission variation in the radial
fitting regions.
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Figure 9: Material density profiles from 1D xRAGE simulations, with the material regions used
for transmission calibration calculations marked in blue and green., and zones excluded from the
background fit are marked in red. We show the material profiles are given for multiple time steps,
corresponding to the times at which experimental data was collected. The field of view within
the Be window is denoted by the solid black box. The directions of the 1st and 2nd shocks are
shown for clarity, and note that the profiles are left/right reversed from the data, due to simulation
geometry convention.
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Region 1 Region 2 Region 3 Region 4

Time Material Material Material Material

[ns] ρi ρf ∆ρ ρi ρf ∆ρ ρi ρf ∆ρ ρi ρf ∆ρ

14.0 CH foam CH foam

500 400 -100 100 100 0

18.5 CH+3%Si CH foam CH foam CH foam

100 100 0 500 400 -100 100 100 0 400 300 -100

20.5 CH+3%Si CH foam CH foam CH+3%Si

100 100 0 400 300 -100 500 400 -100 100 100 0

22.5 CH+3%Si CH foam CH foam CH+3%Si

200 100 -100 200 300 +100 300 300 0 100 100 0

23.0 CH+3%Si CH foam CH foam CH+3%Si

100 100 0 100 300 +200 200 300 -100 50 100 +50

25.0 CH+3%Si CH foam CH+3%Si

100 100 0 200 200 0 100 100 0

27.0 CH+3%Si CH foam CH foam CH+3%Si

100 100 0 200 300 +100 500 500 0 100 100 0

Table 2: Discrete layer model materials and densities. Regions correspond to Fig. 9, numbered from
right to left to correspond to the data images. xRAGE values are displayed as ρi, the adjusted fit
values are ρf , and the difference between them is shown as ∆ρ.

to 500 mg/cc. While there is some post-shock density decay, the average overall density variation
in a CH foam region is ∆ρ < 100 mg/cc, with one extreme case at t = 20.5 ns, which predicts
a variation of ∆ρ ∼ 200 mg/cc. At the Ni BL energy of 7.8 keV and the full tube diameter of
2.250 mm, the largest transmission difference in the CH foam for ∆ρ = 100 mg/cc is ∆T = 8.5%,
when the density is shocked from 100 mg/cc to 200 mg/cc. At the Zn BL energy of 9.0 keV, the
corresponding change in transmission is ∆T = 6%. For the larger density jump, ∆ρ = 200 mg/cc,
from 300 mg/cc to 500 mg/cc, ∆T (Ni) = 13% and ∆T (Zn) = 10%. The density variation in
the ablator remnant is from ∼50 mg/cc to 100 mg/cc, corresponding to transmission differences
of ∆T (Ni) = 12% and ∆T (Zn) = 9%. So overall, the transmission variation within any of the
regions is on the order of 10%. However, this also means that the difference in transmission between
regions of different material can be on the same order, which makes iterating region transmission
with the BL fit and the data crucial to refining the accuracy of the transmission estimate.

3.2.3 Iterate between data and combined models

We iterate between the data and our BL and material layer models by:

1. Taking an average of the data in the fitting region (Fig. 8a)
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Figure 10: Experimental images including initial axial average profiles (black), transmission scaled
(recovered BL) data segmented by model region (various colors), and polynomial fits to the BL
profile (yellow, solid) including the 95% confidence interval (yellow, dashed). A sample 22.5 ns
image is on top, and a sample 27 ns image is on bottom. Images on the left used the original
material model for scaling, while images on the right use the data adjusted model. The data
exlcusion zone for the mixing layer, and example image features are marked on the images.
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2. Partitioning the data into regions (Fig 9)

3. Dividing the data by the model region transmission to recover the experimental axial BL
profile, using the transmission definition 〈IBL(z)〉r = 〈I0(z)〉r = 〈I(z)〉r/TRegion, where I(r, z)
is the original image value.

4. Adjusting the model layer densities and transmissions until the experimental BL profile is
continuous.

Figure 10 shows two sample data images with overlaid plots of the average axial signal, the
transmission-scaled data in the material regions, and the polynomial fit of the scaled data with
95% confidence intervals. The plots on the left image use the layer model density and transmission
values, while the images on the right use adjusted material densities that meet the continuity
criteria.

We determine the region partition locations by initially using the location estimates from the
xRAGE simulations, and then adjusting the locations to correspond to observable material layer
edges or shock features for each individual image. The data set is small enough, 28 images, that
we currently do the boundary adjustment by hand, but larger data sets could use some form of
curve fitting to find the features in the data. Once we determine the regions we divide the initial
average signal in the region by the transmission value for the whole region in order to calculate the
recovered BL signal:

〈IBL(z, z ∈ Regioni)〉r = 〈I0(z, z ∈ Regioni)〉r/(Tmaterial(Regioni)× Ttube(0)), (16)

where the total transmission of the material region has contributions from the CH foam, any ablator
remnants, and the Be tube. We approximate Ttube(r) = Ttube(0) because the fitting window is
chosen where the tube transmission variation is negligible.

Similar to the region boundaries, we adjust the material densities by hand, but determine the
new values using the best fit for all images at a single time. Since we have such a small number
of regions, and the ablator material transmission changes more significantly for small changes of
density than the CH foam, it is generally straightforward to identify if a material region density in
the experiment does not match the density from the model.

The 22.5 ns data in Fig. 10 is a good example of this process, where the Region 1 recovered
BL signal (transmission scaled data) is significantly higher than the rest of the scaled data in the
image. The overestimate of the BL signal is a result of the model assuming a large contribution
from the ablator remnant, at an estimated density > 100 mg/cc. Adjusting the model density to
100 mg/cc to be consistent with the rest of the material model values lowers the recovered BL signal
in Region 1 and makes it more consistent with the rest of the profile. After adjusting Region 1, we
find that the recovered BL signals between Region 1 and 2 are still discontinuous. The recovered
signal in Region 2 is lower than the rest of the profile, so we increase the model density by one
increment of ∆ρ = 100 mg/cc. Now the recovered Region 1 and 2 BL signals are continuous and
consistent with the rest of the profile.

In contrast, at 27 ns the data show a reasonable recovered BL profile even without adjusting
the model, and adjustments to the model parameters have little effect on the fit. The recovered
BL profile at this time is also more uniform, most likely due to a brightening and smoothing of the
experimental 2D BL emission profile as the BL has time to evolve. Both images in Fig. 10 are from
the same experiment, where the earlier image (1st camera strip) was taken right as the BL turned
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on and the later image (2nd camera strip) was taken 4.5 ns later, at the end of the BL pulse. We
find a similar trend across the entire data set, where the earlier images in a given set have a BL
profile that closely resembles the simple Visrad model, while the later images have a more uniform
BL profile. Fortunately, our method of fitting the backlighter and material transmission profiles
applies at any time, allowing us to infer a corrected transmission profile across the entire image.

Once we have reconstructed the BL profile we fit the profile with a 4th degree polynomial,
IBL,axial(z), where the form is derived from the Visrad model (Sec 3.2.1).We also calculate 95%
confidence intervals for the fit, which we then use to also estimate uncertainty in the transmission
conversion constant due to the fit. We ultimately incorporate both these values into the uncertainty
of our final b calculations.

3.2.4 Removing the BL curvature and calculating the transmission conversion con-
stant

Now that we have estimated the material transmission values for our model regions and an esti-
mated BL emission profile IBL,axial(z), we can remove the BL curvature and calculate the signal
to transmission conversion constant without any additional models or assumptions. We do this in
several steps:

1. Calculate a transmission profile, Taxial(z), for the entire axial fitting region:

Taxial(z) =

{
Ttube(0)× Tmaterial(Regioni) if z ∈ Regioni for i = 1...N

〈I(z)〉r/IBL,axial(z) if z /∈ Regioni for i = 1...N
(17)

2. Calculate a correction to raise the edges of the BL profile for flattening the image:

Icorrection(z) = Taxial(z)× (max(IBL,axial)− IBL,axial(z)). (18)

3. Apply the correction to entire image:

Inew(z, r) = I(z, r) + Icorrection(z). (19)

4. Calculate conversion values using the material model regions and the corrected image:

Cconversion(z) = Tmaterial(Regioni)/〈Inew(z, z ∈ Regioni)〉r for i = 1...N, (20)

where 〈Inew(z, z ∈ Regioni)〉r is radially averaged in the fitting region.

5. Calculate the average conversion constant and the standard deviation to include in the un-
certainty:

Ctransmission = 〈Cconversion〉z ± σ(Cconversion). (21)

6. Convert the image to a transmission map:

Tmap(z, r) = Ctransmission × Inew(z, r). (22)

24



Figure 11: (a) Calculated axial transmission profile from Eqn. 17 for N180221-002, strip 1 from
Fig. 10 using the adjusted model. Black lines indicate model regions of constant transmission
values. Includes curves calculated using the nominal BL fit (blue solid), and curves calculated
using the 95 confidence intervals of the BL fit (blue dashed). The gray region indicates the mixing
layer region excluded from the BL fit. (b) Correction curve from Eqn. 18, used to eliminate BL
droop of the edge of the image. (c) Averaged profiles from the corrected image, Eqn. 19. Original
profile on red for reference. (d) Conversion values curves from Eqn. 20. Includes average conversion
constant and standard deviation from the nominal BL fit.
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Performing the image corrections using the averaged transmissions and intensities, Taxial(z)
and Icorrection(z), allows us to make corrections around the mixing layer without incorporating any
material fluctuation information into the calibration. Due to both the relatively flat BL profile in
the mixing region, the correction within the mixing region also tends to be small. Thus, the final
density fluctuation analysis across the mixing layer should be relatively insensitive to the BL fit by
design. However, we still incorporate the uncertainties from the backlighter fit and material model
into the final analysis.

3.2.5 Calculation uncertainty

We incorporate uncertainty from the above transformations into our calculation of b through the
confidence intervals of the BL fit and the standard deviation of the final transmission conversion
constant. Direct calculation of how these uncertainties propagate through our analysis process is
complicated, but we can estimate the total uncertainty by averaging the calculated b for a range
of parameters. In practice this means we calculate Ctransmission for the nominal IBL,fit fit and both
of the 95% confidence interval curves, yielding three cases of Ctransmission. Each Ctransmission has a
standard deviation, so we calculate b using the nominal value and both C+σ and C−σ. Thus, we
calculate nine different instances of b, from which we find an average b and estimate the uncertainty
as the standard deviation of these values.

It should be noted that due to the novelty of this measurement in HED, the current goal of the
analysis is to establish a form of reasonable comparison to turbulence models. This broad goal does
not provide much guidance on what kind of bounds on measurement uncertainties will ultimately
be needed to constrain a given model. However, we have attempted to outline the steps necessary to
quantify uncertainty in this type of measurement. In general, we prioritize incorporating anything
that could contribute > 5% variation in our image background into our models for background
removal and ultimately our uncertainty analysis. In this case both the axial BL curvature and the
density difference between various background material regions both can give rise to ∆T > 5%.

Fitting and calculating an uncertainty interval for the axial BL profile incorporates uncertainty
both from the as-shot BL profile not being flat and from the BL profile deviation from the ideal
Visrad model. We chose the 95% confidence interval for the BL fit since it is a standard way
to quantify fit uncertainty in many other measurements, but note that if more rigorous guidance
on uncertainty requirements becomes available we could use a different fit uncertainty metric and
incorporate it into the final analysis in the same way.

Similarly, the standard deviation of the final transmission conversion constant incorporates un-
certainty from assumptions in our material model. Since we calculate the pre-averaging conversion
constant profile Cconversion at all points inside our material model regions, if our density assumption
in a region was inaccurate this would lead to a notable discrepancy in that portion of the calcu-
lated Cconversion profile. Since we average over Cconversion, the discrepancy is included in the final
average and standard deviation. The material model also assumes a constant material density in
each material region, as a way to reduce the more detailed xRAGE density profiles to something
manageable for iterating with the BL model and data. However, the reduced model was necessary
because there is expected density variation in each material region. Most of the variation in the
Cconversion profile is due to the observed regional density variation, which is again incorporated into
the final measurement uncertainty through the average and standard deviation of the transmission
conversion constant.
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CHI (1.4 g/cc) PAI (1.42 g/cc) CH foam (0.1 g/cc) Be (1.85 g/cc)

T (L = 100 µm) 0.57504 0.91244 0.99560 0.97983

∆T (∆L = 10 µm) 0.03096 0.00832 0.00043 0.00199

Table 3: Sample transmission values for all target materials in and around the mixing layer at the
Ni BL energy of 7.8 keV, where L is the material attenuation length.

3.3 Calculating density in the mixing region

Figure 12: (a) Target material thickness Li(r) in the direction of the line-integrated x-ray at-
tenuation for each of the target components. Thicknesses given for the radial extent of the fi-
nal data images of just the mixing layer used for later b analysis. (b & c) X-ray transmission
through different materials of the target and the total transmission through both the foam back-
ground region and the combined CHI layer and PAI disk. The total transmission through the
foam region is T (r) = Tfoam(r) × Ttube(r) and the total transmission through the tracer disk is
T (r) = TCHI(r) × TPAI(r) × Ttube(r). All transmission curves use cold opacities and initial target
densities.

Now that we have converted the image into a transmission map, calculating the density of the
tracer material is determined by: (1) the tracer material, (2) the target geometry, and (3) the
state of the surrounding material. For simplicity we only need to consider a small region of the
total transmission map centered on the mixing layer. The chosen region is a window that spans six
wavelengths of the large-mode perturbation, where λ = 150 µm, so 6λ ≈ 0.9 mm on a side. The
process for calculating the density of the tracer layer is:

1. Fit a background foam region and find the target center axis

2. Remove transmission variation due to tube curvature

3. Remove radial BL variations from the transmission map

4. Calculate the CHI density map.

We designed our target such that the material in the tracer strip (CH + 3% I by atomic
fraction) is significantly more opaque per unit integration length than any of the surrounding
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Figure 13: Average radial profiles of the fitting regions shown in Fig 8(b), with corresponding
polynomial fits for all 9 uncertainty cases (Sec 3.2.5), and corresponding to (a) the top, and (b)
the bottom sample images in Fig. 10.

materials (Table 3) while remaining mass-matched to the PAI material which comprises the rest
of the higher-density mixing layer. The relatively high opacity of the CHI tracer material
allows us to make the assumption that any small-scale material fluctuations we observe
in the image are due to the CHI. The other materials in the target are so transparent that any
fluctuations will have a negligible affect on transmission. For example, if we consider a characteristic
10 µm change in structure length for each nominal density material, the CHI undergoes a 3× larger
change in transmission than any of the other target materials (Table 3).

While the CHI is more opaque per unit integration length than the surrounding materials,
the CHI layer is also significantly thinner than the surrounding target components, with 200 µm
of CHI compared to & 1 mm for all other materials (Fig. 12(a)). So, while we can attribute
small-scale changes in transmission on the x-ray images to perturbations of the CHI layer, we
must take into account the average contribution of the other materials to the total transmission.
Both the curvature of Be tube and the PAI portion of the higher-density layer show a variation in
transmission of several percent across the field of view of the image, with an expected ∆TBe = 0.032
and ∆TPAI = 0.029, using the initial target densities and cold opacities (Fig. 12(b & c)). Even
though the Be and PAI transmission curves have opposite curvature, their combination produces a
net curvature similar to the PAI. During the experiment, the PAI can be shocked up to higher than
initial density, enhancing the effect of the curvature on the images. Even at the initial densities,
the total transmission through the CHI/PAI disk is small enough that the variation in transmission
is ∼ 15% and requires correction when we calculate the CHI density.
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3.3.1 Finding the central axis of the target

We can use the known geometry of the target components to remove the bulk transmission variation
due to other target components from the final density calculation of the mixing layer. Because
there is no observable radial expansion of the target in the mixing region over the duration of the
experiment, we assume that all target components in the image FOV keep their original geometry
from Fig. 12(a). However, to apply the known tube geometry to the data we need to find the
central axis (r = 0) of the tube in each image.

We locate the central axis by fitting the observed curvature of the transmission map in the foam
background region (Fig. 8(b)). We use the foam background region far from the mixing layer instead
of the mixing layer itself because transmission variations due to shock curvature of the layer, or
growth of the large perturbations, can match or exceed variation due to Be/PAI curvature. We take
the axial average of the transmission map values in the fitting region to estimate the average radial
profile. In most of the data the resulting transmission has a curvature similar to our estimation of
the total transmission curve in Fig 12(b).

Figure 13(a) shows the typical parabolic experimental transmission curves and corresponding
polynomial fits for one of the example images used in Fig 10, with one curve for each of the
uncertainty fitting cases outlined in Sec 3.2.5. As expected, the different BL fit and conversion
constant values only change the absolute value of the calculated transmission but do not change
the structure of the 2D transmission map, and thus do not change any of our calculation methods.
We fit the radial transmission profile with a 2nd degree polynomial and set the peak transmission
of the profile to be the value at r = 0, and use this polynomial fit for further calculations. We make
this assertion based on the assumption that the profile curvature is due primarily to the target
components, since the theoretical ∆Ttot = 0.0227 is ∼ 2× larger than the radial BL variation
predicted from our Visrad model.

While most of our images display the expected transmission curve in the foam region, some
images also have a linear background offset, or a profile peaked very near the edge of the image
FOV (Fig. 13(b)). This may be due to imperfections in an individual experiment, like arcing or
light leaks on the camera, or changes in irradiation from dropped beams on the BL. In these cases,
we currently constrain our fit such that if the maximum of the fit curve is outside a ±300 µm
window around the center of the image, then we assume r = 0 corresponds to the center of the
image. We base this assumption on the assertion that a 300 µm offset in the image center would be
notable by eye when choosing the small mixing layer region from the larger image, as the spatial
fiducials seen in the images are 150 µm wide for comparative scale. This assumption is sufficient
for the current comparison to models, but we note that should a stricter uncertainty limitations
emerge from future comparisons, then the spatial fiducials and pre-shot target radiographs could
be used to calculate r = 0 on a target-by-target basis.

3.3.2 Removing tube curvature

Once we know where r = 0 on an image, we re-calculate the material thickness profiles from
Fig. 12(a) with any experimental offset from image center. Since the Be tube spans the entire
image, we can then simply remove any transmission variation from the tube curvature by

Tnew(z, r) = Tmap(z, r)/Ttube(r). (23)
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3.3.3 Removing radial BL variation

Now that we have the material thickness profiles, we can also fit and remove any observed radial
BL curvature in the transmission map. We calculate the BL variation as any large-scale variation
that remains after removing the transmission profile of the target components. In our foam fitting
region, now that we have removed the Be tube contribution, we know that

I(r) = I0(r)× Tfoam(r), (24)

where all the BL fluctuations are contained in I0(r) and Tfoam(r) has the curved profile from
Fig 12(b). The image has been converted into a map of the transmission, so I(z, r) = Tnew,avg(z, r)
from the data. We then calculate the BL intensity variation as

IBL,radial(r) = 〈I0(r)〉z = 〈Tnew(r)〉z/Tfoam(r), (25)

where Tfoam(r) is determined using the experimental foam density. The foam density is given by

ρfoam,exp = − ln〈Tnew(−0.150 mm < r < 0.150 mm)〉z,r/(2RtubekCH). (26)

We fit the calculated IBL,radial(r) with a 4th order polynomial, similar to the axial fit in Sec. 3.2.1.
We again raise the BL profile at the edges to flatten the transmission map, such that

Icorrection(r) = max(IBL,radial(r))− IBL,radial(r), (27)

and the flattened map is

Tfinal(z, r) = Tnew(z, r) + Icorrection(z)× Tnew(z, r). (28)

3.3.4 Calculating the CHI density map

Now that we have removed the Be tube attenuation and BL variation, the only contributions to
the transmission in the mixing region are from the CHI tracer strip and the PAI sections of the
solid plastic disk:

Tfinal(z, r) = TCHI(z, r)× TPAI(z, r) (29)

= exp(−ρCHI(z, r)LCHIkCHI)× exp(−ρPAI(z, r)LPAI(r)kPAI), (30)

where Li is the material thickness, or material attenuation length for the radiography, and ki is the
material attenuation constant at the BL energy. We can then calculate the CHI density as

ρCHI(z, r) = [ln(1/Tfinal(z, r))− ρPAI(z, r)LPAI(r)kPAI]/(LCHIkCHI). (31)

We again assume negligible lateral expansion of the CHI strip and the PAI disk along the radiogra-
phy axis, so at any time during the experiment LCHI(t) = LCHI(0) = 200 µm, and we can calculate
LPAI(r) similar to Fig. 12(a).

We now need to calculate the density of the PAI, ρPAI(z, r), which we then plug into equation
31 to determine the density of the CHI. We can calculate ρPAI(z, r) using the knowledge that the
CHI and PAI should have the same densities, since they have the same initial density and thus
should evolve similarly during shock and expansion. Defining the evolved bulk density at a given
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time as a multiple of the initial density, this becomes ρ(z, r) = ρCHI(z, r) = ρPAI(z, r) = C(z, r)ρ0.
We can then rewrite the final transmission equation as

Tfinal(z, r) = e−C(z,r)ρ0eLCHIkCHI+LPAI(r)kPAI . (32)

Solving for C, this gives us

C(z, r) = ln(1/Tfinal(z, r))/(ρ0 × LCHI × kCHI + ρ0 × LPAI(r)× kPAI). (33)

Recall that we designed our experiment such that we can assume that any small-scale fluctu-
ations we observe are only due to the CHI tracer material. For the PAI material, not only is the
opacity relatively low, making the signal from small fluctuations negligible in the image, but we
also average over ∼ 2 mm of PAI in the data region under investigation (10X CHI thickness). For
example, assuming PAI density structures of 50 µm (∆T ≈ 2%), the upper limit of our defined
‘small’ scale, we would average through ≈ 35 of these features in the thinnest part of the PAI in
our final mixing images. For structures near our resolution limit of 20 µm (∆T < 1%) we would
average over ≈ 90 features. Thus, we assume that we only observe a bulk material signal from the
PAI, and since the experiment is azimuthally symmetric, this reduces ρPAI(z, r) ≡ ρPAI(z). Using
the above assumptions, the density relation for PAI becomes ρPAI(z) = 〈C(z)〉rρ0. The equation
for calculating CHI is now

ρCHI(z, r) = [ln(1/Tfinal(z, r))− 〈C(z)〉r × ρ0 × LPAI(r)× kPAI]/(LCHIkCHI). (34)

With this relationship we are able to convert our transmission map into a CHI density map, and
we can examine the density fluctuations to calculate b.

4 Calculating b

Once we have a material density map, calculating average and fluctuating densities is relatively
straightforward. Recall that the definition of b is

b = −
〈
ρ′v′
〉

= −
〈
ρ′

ρ

〉
, (35)

so if we can calculate the density fluctuation quantities, the challenge of calculating b becomes a
question of choice of ensemble averaging. Our choices of ensemble averaging are informed by the
limitations of our available data. For HED experiments we generally have a single two-dimensional
map of density, for a specific time step, for a specific set of initial conditions. In contrast, low-
energy-density or traditional hydrodynamics experiments have a collection of ∼ 10–100 images for
each time step and initial condition. Therefore, unlike traditional hydrodynamics we must choose
and ensemble average such that we can infer b from a single image. Moreover, calculating b from
a density map alone is not a purely prescriptive calculation, because there are many geometrical
degrees of freedom over which we can infer average densities and fluctuations to these averages,
and each method will produce different results. So when applying Eqn. 35, the choice of how we
average the density across this map essentially defines a set of assumptions for the implied mixing
model we use to calculate b, which we will discuss further in Sec. 5.3.
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In this section we will lay out both a 1D and 2D averaging method for extracting 1D and 2D b
profiles from the data. In choosing a definition for the ensemble averaging, we are choosing what
set of material fluctuations need to be incorporated into our turbulence model instead of simulated
directly. Therefore when we consider the averaging possible in our images, it is useful to think in
terms of simulation geometries. An experiment dimension we average over is essentially a dimension
not resolved in our simulations. Fortunately, HED experiments can be manufactured with very
specific initial conditions, such that we designed the experiment specifically so that images of the
carrier wave growth would approximate the behavior of a 2D simulation. The targets were designed
with set large-scale, sinusoidal perturbations in the tracer layer (the carrier wave), with multiple
wavelengths visible at any time. In addition, we add surface roughness on the carrier wave, which
we designed to be compared to the tracer layer width so it effectively incorporates 3D mix into the
system, similar to using a turbulence model to incorporate 3D mix in a 2D simulation. Since our
data is a 2D map, the question becomes what averaging we can do in the remaining dimensions
and how does that relates back to the information that is incorporated in the model parameters.
In order to make the most direct comparison to simulation, we also analyze the xRAGE + BHR
simulation and model outputs using a very similar method as we do with the data, which we will
discuss in Sec. 5.2.

We will discuss calculating b using both the ρ′v′ and the ρ′/ρ formulations, and demonstrate
that they are computationally equivalent to rounding error, even using double precision. Thus, the
method works for the traditional ρ′v′ formulation from Kurien et al. [1], as well as the computa-
tionally simpler ρ′/ρ formulation.

4.1 1D calculation of b

The most obvious available choice in averaging in a 2D image is along one of the image axes. This
form of averaging essentially collapses the information into an unresolved simulation dimension, so
the direction over which we average should be orthogonal to the flow direction, and parallel to the
mixing layer, as this mimics the geometry of a 1D flow simulation. This averaging scheme essentially
assumes that our turbulence model now incorporates all mixing information at the surface of and
throughout the mixing layer.

Applying this averaging scheme to our data, we average the CHI density along the axis parallel
to the tracer layer. Fluctuating quantities are always given relative to average quantities, where

ρ′ = ρ− ρ, and ν ′ =

(
1

ρ

)′
=

(
1

ρ

)
−
(

1

ρ

)
. (36)

The data is natively discretized as an M ×N matrix (pixel form of an image), so we can calculate
the inverse of the density at every pixel (i, j) as νij = (1/ρ)ij = 1/(ρij). Rewriting Eqn. 36 using
our 2D density and inverse density maps, ρ(z, r) and ν(z, r), and averaging along the vertical axis
r, we get

ρ′(z, r) = ρ(z, r)− 〈ρ(z, r)〉r = ρ(z, r)− ρ(z) and (37)

ν ′(z, r) = ν(z, r)− 〈ν(z, r)〉r = ν(z, r)− ν(z). (38)

So for every horizontal position in our density map we calculate the average density along a vertical
lineout. We then calculate the density and inverse density fluctuations using Eq. 36, with which
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Figure 14: CHI density map for shot N190923-001, strip 2 at 27 ns. Overlaid on the density map
are the calculated 1D b(z), ρ0(z), and ρ0b(z) curves, including uncertainties calculated according
to Sec. 3.2.5.

we calculate the 1D b as

b = −
〈
ρ′(z, r)v′(z, r)

〉
r
, or b = −

〈
ρ′(z, r)

ρ(z, r)

〉
r

. (39)

Functionally, we multiply the fluctuation density value at every point along a vertical lineout by
the inverse density fluctuation value at that same point, and then we take the average of the final
product over the entire lineout. Similarly, we can do the same thing only dividing the fluctuation
density value by the original density value. For these 1D calculations, both formulations of equation
39 give the same value of b to within ∼ 10−15, which is at the limit of rounding error for a double
precision value.

Figure 14 shows the calculated 1D b and ρ values for the displayed image. The ρ curve is similar
to what we expect, with a peak value smaller than the initial density of the layer and a larger layer
width, since this data is taken during the reshock expansion period and the CHI mass within the
mixing region should be conserved. The wings of the ρ curve are most likely due to some opacity
contribution from the long-integration length through the twice shocked CH foam surrounding the
mixing layer, even with the designed significantly larger opacity of the CHI mixing layer. However,
there is a significant inflection between the peak and the background which corresponds to features
in both the 2D image and the 1D b curve, so we are able to distinguish the mixing layer from the
foam for later comparison to simulation.
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The b curve also meets our quantitative expectations. We know that b should be large in regions
of ‘chunk’ mix, and that b should be smaller in regions that are more atomically mixed, approaching
the limit b→ 0 in regions with only one material, in which we effectively have perfect atomic mix.
Thus we expect that b → 0 in the foam region far from the mixing layer where we expect those
regions to be entirely comprised of the CH material, and we can assume a negligible amount of
CHI mixing. In practice, b → 0 in the foam is not always true if there is still significant noise
present after filtering, as we will discuss in Sec. 4.2. Similarly, we expect b to be small, but not
necessarily zero, in the center of the mixing layer. Even at late times when we observe significant
growth of the carrier wave, we do not see the carrier perturbations feed through to the layer center.
So while some foam material is expected to mix into the bulk of the CHI, we do not expect any
large, discrete volumes of CH to dominate the mixing at the layer center. Thus, we expect b in the
layer center to tend towards atomic mix. Finally, we expect a peak in b at any material boundary
that is not a perfect material discontinuity that is exactly parallel to the averaging direction. A
density gradient at a material boundary requires material mixing, where b→ 0 outside the gradient
region and b 6= 0 inside the gradient region, leading to a b peak. Any boundary not parallel to
the averaging direction, such as the sinusoidal perturbations in Fig. 14 or the layer curvature in
Fig. 10(top), is effectively chunk mix as the averaging crosses a material boundary. Thus, the b
curve in Fig. 14 has the expected features of a peak in b at both edges of the mixing layer, small
values of b within the layer, and then b→ 0 far from the mixing layer.

From both the 1D b and ρ curves, several natural metrics for evaluating model performance
emerge. The first thing to note is that we now have two different 1D quantities to com-
pare to our models from a single image, which is already significantly more information
than the single scalar mix width measurement from historic HED hydro-instability and
turbulence analysis. Metrics we can use for comparison to simulation are:

• width and amplitude of the ρ peak corresponding to the mixing layer,

• width and amplitude of the b profile using peaks corresponding to the edge of the mixing
layer,

• number of peaks in the b profile, and

• b peak symmetry.

Note that the width of both the b and ρ profiles yield similar information to the the traditional
mix-width measurement.

While the 1D averaging geometry is naturally suitable for comparison to 1D simulations, if we
analyze 2D simulation outputs in a similar manner to the data, we find that we can use these 1D
curves to examine 2D model performance as well, which we discuss in Sec. 5.2.

4.1.1 2D calculation of b

We can calculate a 2D measurement of b from a single image due to our use of a carrier wave
perturbation. Each wavelength of the carrier wave acts as a single instance of linear perturbation
growth, or effectively a single sub-image that can be treated separately. When we add surface
roughness to the carrier wave, each wavelength of the carrier contains many perturbations from
the small-scale roughness. Therefore, each wavelength can be approximated as a separate system
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Figure 15: (Top) CHI density map for shot N190923-001, strip 2 at 27 ns, with the sub-image
regions corresponding to one carrier wavelength overlaid. (Bottom) Calculated 2D ln(b(z, r)) map,
where we use a log scale to make certain features more apparent.
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with a different turbulent evolution initialization originating from the same initial conditions of a
prescribed roughness. Our 2D averaging then becomes analogous to multiple initialization method
in traditional fluid experiments, where a one-carrier-wavelength sub-image is treated as a single
independent measurement and we perform a 2D ensemble average over all of the sub-images. In
this case, the carrier wave is expected to only display linear growth, so any observed small-scale
structures should be a result of the added surface roughness. Thus, the 2D b measurement examines
the surface mix along the mixing layer, and should neglect any ‘chunk’ mix contribution from the
carrier wave, unlike the 1D b measurements.

The first step in the analysis is to divide the full density map ρ(z, r) into a number of sub-images,
that are each one carrier wavelength λc wide:

ρi(z, rc) = ρ(z, (i− 1)λc < r < iλc), where rc = [0, λc]. (40)

We then calculate the average and fluctuating density values by looking at identical pixel locations
in each sub-image, as illustrated by the stars in Fig. 15. For the six sub-images in Fig. 15 we
average over those six illustrated points to get the average density. Similarly, the fluctuating
density is calculated relative to that average at each of those six points. Formally, the average and
fluctuating densities are:

ρ(z, rc) = 〈ρi(z, rc)〉i, and ρ′i(z, rc) = ρi(z, rc)− ρ(z, rc). (41)

We use the same procedure to calculate the analogous ν(z, rc) and ν ′i(z, rc). We then perform the
ensemble average by averaging the fluctuating quantities at the same point in each sub-image:

b(z, rc) = −〈ρ′i(z, rc)ν ′i(z, rc)〉i, or b(z, rc) = −
〈
ρ′i(z, rc)

ρi(z, rc)

〉
i

. (42)

As was the case with the 1D b calculation, both the density and velocity formulation of 2D b give
the same values to within ∼ 10−16.

Figure 15 shows the 2D ln b map calculated for the sample image, where we use the log values to
improve the display contrast between the mixing layer values and the background. Unfortunately,
due to the small sample size the 2D b structures are not as clear as for the 1D case. However, we
can still clearly see structures corresponding to layer edges, and can use their width and amplitude
to compare to simulation.

4.2 Noise suppression and ρb

We find that the dominant sensitivity in the analysis is to the filtering, as the changes in b due to
background noise variation are much larger than the uncertainty due to the fit or the transmission
calibration. The b calculations are sensitive to the limitation that the density in the image cannot
go to zero, or even become very small relative to the mixing material, without causing b to either
become undefined or unphysically large, b � 1. Both ν = 1/ρ and dividing by ρ directly blow up
at small values, amplifying any variation in low-density regions. This sensitivity to variation in
low-density regions is one of the reasons that specifically multiplicative noise in high-transmission
target regions/high-signal data is such a challenge for measuring b. When the signal is large, the
noise fluctuations are also large and translate into significant fluctuations at low-density, and can
even potentially cause an unphysical zero or negative density in the image.
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Figure 16: Example 1D b, 1D ρb, and 2D b calculations for a post-reshock (25 ns) image (N180221-
001) filtered using (a) the wavelet filter at scale = 5 px and (b) the ANLM filter.

We implement three approaches to suppressing this noise in our final analysis. The first approach
is to enforce a low-density threshold in the density map, such that any density values below a limit
are replaced with values from the average of the surrounding region. In our data we choose the
limit of ρmin = 0.05 g/cc (∼ 5% of the layer initial density), and replace the low-density values
using the MATLAB ‘regionfill’ Laplacian interpolation function.

The second approach is to over-filter instead of under filter the images to prioritize suppress-
ing the multiplicative camera noise in the background region, discussed in Sec. 3.1.1. Figure 16
illustrates the sensitivity to filtering using a particularly noisy image from an experiment where
the BL under-performed so the signal was low. When we under filter the image using the wavelet
filter at a 5 pixel scale, we observe a region of small 1D b corresponding to the mixing layer, but we
cannot distinguish any 1D b features at the layer boundary from the significant background noise.
However, when we use the ANLM filter which biases towards over-filtering, we recover a clear 1D
b peak at the right-hand layer boundary. Any 1D b features for the left-hand boundary are still
obscured by the noise.

Finally, we can choose to examine ρb instead of b to gain insight into what features in a noisy
image are due to the mixing layer and use those features for comparison to simulation. Calculating
ρb weights the b values by how well they correspond to the mixing layer material, suppressing noise
in b away from the CHI. Figure 16 illustrates how ρb suppresses the background in our noisy sample
image. For both filtering methods, the ρb brings the background down to near or less than the
level of the mixing layer. We can now also distinguish a small peak corresponding to the left-hand
layer boundary. A significant display of the efficacy of combining both over-filtering and examining
ρb can be seen in the 2D ρb plots. In the wavelet filtering case, even plotting ln ρb the image has
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no discernible features. When we apply the ANLM filter, however, we do recover a layer boundary
feature.

So even for degraded images, we have a method for calculating not only 1D and 2D ρ profiles,
but 1D and 2D b and ρb profiles with distinguishable features for comparison to our simulations.

5 Results

Now that we have a method to calculate 1D and 2D b, we can process all our thin-layer data
and compare it to simulation to assess the model performance. In Sec. 5.1 we will discuss trends
observed in the data for all perturbation initial conditions, and in Sec. 5.2 we will compare BHR
model performance over a range of initialization schemes to the experiment.

5.1 b measurements

While we have analyzed all the NIF thin-layer Mshock data, in this section we will concentrate on
examining trends only in the 80-µm thick data set, since that is the significantly more complete
data set for all perturbation initial conditions. We present the ρ and ρb measurements in two ways
in order to aid comparison across the data sets. First we plot the 1D ρ, b, and ρb measurements
with uncertainties, and the 2D ρb measurement in conjunction with the individual density images
for the entire time series. Overlaying the 1D ρ and ρb measurements on the density map aids
in identifying density features that contribute significantly to the 1D measurement, e.g. layer
curvature or large carrier perturbation growth. Figures 17–19 show the data sets for the smooth,
low-roughness, and high-roughness perturbation initial conditions respectively. Second, in Fig 20
we present only the 1D ρ and ρb measurement for each initial condition on the same plot, in order
to aid with comparison of curve shapes and amplitudes.

Examining the data sets, we find there are many trends shared across perturbation initial
conditions:

• Almost all ρb curves have peaks significantly above the background corresponding the initially
perturbed (left) and feedthrough (right) edges of the mixing layer.

• During the 1st-shock phase the 1D ρb curves show significant contribution from the layer
curvature, manifesting as an asymmetric peak profile with the larger peak on the right.

• At the end of the 1st-shock phase (22.5 ns) the 1D ρb curves have three peaks, with two peaks
corresponding to the large carrier wave growth on the initially perturbed (left) interface. The
first peak is due to the bulk perturbation growth, while the second peak is due to low-density
surface mix.

• At 22.5 ns we can see the re-compression on the mixing layer due to the reshock arrival in the
1D ρ curve. For t > 22.5 ns we see the subsequent layer expansion reflected in the decreasing
peak density and increasing peak width for the 1D ρ curve.

• During the reshock phase the 1D ρb peaks are of lower amplitude than during the 1st-shock
phase, indicating that mixing is increasing during reshock as expected.
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Figure 17: Data set for the 80-µm thick layer with the smooth (no roughness) initial
condition. Shot number, initial condition, timing, and growth phase are all marked on each image.
Each images includes the 1D ρ (red), b (magenta), and ρb (cyan) measurements with uncertainties,
and the 2D ρb map.
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Figure 18: Data set for the 80-µm thick layer with the low-roughness initial condition.
Shot number, initial condition, timing, and growth phase are all marked on each image. Each
images includes the 1D ρ (red), b (magenta), and ρb (cyan) measurements with uncertainties, and
the 2D ρb map.
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Figure 19: Data set for the 80-µm thick layer with the high-roughness initial condition.
Shot number, initial condition, timing, and growth phase are all marked on each image. Each
images includes the 1D ρ (red), b (magenta), and ρb (cyan) measurements with uncertainties, and
the 2D ρb map.
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Figure 20: Comparison of the 1D ρ (red) and ρb for each individual initial condition at t = 20.5 ns
(red, 1st shock), 22.5 ns (orange, 1st shock), 25 ns (green, reshock), and 27 ns (blue, reshock). We
only show a sub-set of the data times here to aid with plot legibility. All ρ and ρb are plotted with
the same respective vertical scale.
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• In the 2D ρb plots, we see two vertical strips corresponding to the edges of the mixing
layer. Pre-shock the edge features are perfectly vertical and well separated. During the
1st-shock phase, the features develop a curvature corresponding to the layer curvature and
the separation decreases. During the reshock phase the feature separation increases again,
and many of the edge features show a breakup corresponding to the carrier perturbation
periodicity.

Now we have established general trends, we can examine difference across the initial conditions:

• The low-roughness data set shows the most layer re-compression at reshock instead of the
smooth data set, as one might expect.

• The low- and high-roughness data sets have significant surface mix on the feedthrough edge
for t = 20.5 ns. The surface mix manifests as a broadening of the right ρb peak due to a knee
feature.

• The high-roughness data set contains the only ρb curves where the peaks at the layer edge
decrease to the level of the background noise, where this occurs for t ≥ 22.5 ns. This indicates
that the larger roughness generates more surface mix on the feedthrough (right) side once the
reshock arrives. Both this and the previous bullet may indicate that more high-modes are
managing to feedthrough the layer instead of being annealed.

• The low-roughness data set shows the smallest ρb peaks at 27 ns. Both the smooth and
high-roughness data sets show a notable increase in the amplitude of the left peak between
25 ns and 27 ns due to growth of the carrier perturbation.

Now that we have an idea of ρb morphology and evolution in our experiment, the best way to
check if our analysis assumption have measured a model relevant version of b is to compared it to
our model performance and see if the model ρb morphology and evolution are similar.

5.2 Comparison to simulations

As a reminder, the ultimate point of measuring b is to examine the performance of our turbulent
mix model under HED conditions. In order to assess model performance we must ensure that we are
comparing as close to equivalent quantities as possible between the experiment and the simulations.
We generally simulate our HED instability growth experiments in 2D in order to examine the finer
details of the simulated mixing layer, and so we model the NIF thin-layer Mshock experiments
primarily in 2D. Since the 2D b measurements have very low data-statistics, we would like to
compare the 2D simulations to the 1D b measurements as well since those measurements should be
less susceptible to low-statistics effects.

For practical computation, turbulence is often represented by mean-field turbulence models,
which solve the ‘Reynolds-Averaged Navier-Stokes’ (RANS) equations. This class of models evolves
moments of the hydrodynamic variables under assumptions that the small fluctuations obey suffi-
ciently universal behaviors. Within this type of model, when multiple fluid densities are present,
the b variable describes the hydrodynamic coupling between mean pressure and turbulent mass
fluxes. However, terms which describe interactions between species couple mostly through the den-
sity variance 〈ρ′′〉, which is only the leading order component of b (cf Eqn. 8). Since both types of
coupling terms describe only part of the information of the true fluctuating density field, and are
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not independent, either one or the other must be chosen to evolve in a RANS model. Models which
chose to retain and evolve b are the BHR family of evolution models. Other choices to model the
variance or another truncated value, such as the model developed to analyze the CEA shock tube
experiments [10], result in different final equations.

To explore the evolution of b against data, the NIF thin layer experiment was simulated in the
LANL xRAGE radiation-hydrodynamics code. Two variants of the BHR model were tested in this
study. The two models each build upon the governing assumptions in the BHR introduced in [4].
These assumptions include the idea that compressibility is confined to the mean-fluid scale (i.e.
that the Mach number of the turbulence itself is small), and that local self-similarity means the
turbulence can be characterized by a length scale s. Setting the initial value of the turbulent length
scale, s0, is the main unclosed parameter in BHR’s turbulence model evolution, and must be chosen
on a problem-by-problem basis. This choice can be done by hand, by intuition, or by exhaustive
scanning of the possible parameters. More recently, it has been proposed to use an auxiliary calcula-
tion (the ‘Modal Model’) which evolves an interface spectrum analytically in a separate calculation,
using information from the simulation mean-field as boundary conditions, and calculating an s0

profile to initialize the BHR model in the original calculation once turbulence become sufficiently
developed. Ultimately however, this type of calculation does not replace the closure parameter
s0, but enforces more sophisticated guidance on how it could be picked dynamically. There are
many possible implementations of Modal Model closures, and studying and selecting between them
remains an ongoing area of research [11].

The first turbulence model we used is the “BHR-3.1” model, which built on the BHR derivation
by introducing a second length scale to the problem, and undertaking a full recalibration of the
model coefficients [12]. This version has been the workhorse turbulence model of production releases
of the xRAGE code for several years, is well-vetted, and has been previously validated in the HED
regime with experiments such as the long-running LANL NIF Shear experiment.

The second turbulence model is the “BHR-4” model developed by Braun & Gore [13]. This
model makes a fundamental change by interpreting the turbulent mass flux evolution to describe
not just coupling of the hydrodynamics and turbulent energies through density, but that it also
should describe the motion of the mean mass field. This replaces so-called ‘Boussinesq’ or eddy-
viscosity models, which model the turbulent motions as chaotic diffusion locally proportional to the
turbulent energies and length scales. Reinterpreting the mass motion in terms of the dynamic flux
vector introduces new potential dynamics relevant to the stabilization or destabilization of nearby
interfaces, such as in thin shells. As such, though it is still under development and validation,
we expect it to be relevant to the thin layer experiment’s geometry, and explore some results of a
‘beta version’-level implementation of the code. Due to the lack of formal code verification at this
time, these should not be considered binding statements on the results of BHR-4, but are provided
to show how sensitivities to the modal form may be reflected in the b evolution and studied by
experiments when measurements of b are available.

5.2.1 Comparing mode resolution schemes

How we extract a comparable b from the simulation depends on the perturbation initialization
geometry. In xRAGE simulations using the BHR mix model, the density field is only the bulk
flow. Fluctuating quantities are only calculated as statistical moments in the mix model. The bulk
flow and the fluctuating flow are realized separately, where the average flow is given as a density
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Figure 21: Comparison of ρbBHR, ρbpert, and ρbtot for initializations of xRAGE using both (a) a
flat layer and (b) resolving the sinusoidal carrier wave. (c,d,g,h) Plots of the 2D BHR b map, using
all target materials, with the corresponding 1D ρbBHR. (e,f,i,j) Plots of the 2D ρ map with the
corresponding 1D ρbpert.
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map and the material fluctuations are given as a b map. In a crude sense, xRAGE evolves the
bulk flow while BHR handles all the fluctuations, and so b encompasses all parts of the mixing not
resolved by xRAGE. Therefore, if no modes are explicitly resolved in the initial simulation, then
all instability growth is incorporated into the mix model as part of the b map. However, if some
modes are resolved in the initial geometry, then the growth of those modes show up in the bulk
flow density map. So, if we resolve the modes directly, we need to calculate a b due to those modes
in addition to the BHR b.

We calculate 1D b from the 2D simulations similar to how we calculate 1D b from the 2D data,
by taking averages of b and ρ orthogonal to the flow. For a 2D b map bsim(z, r) and a 2D density
map, ρsim(z, r), from simulation we define

bBHR(z) = 〈bsim(z, r)〉r, (43)

ρ(z) = 〈ρsim(z, r)〉r, (44)

bpert(z) = −
〈
ρ′sim(z, r)

ρsim(z, r)

〉
r

= −
〈
ρsim(z, r)− ρ(z)

ρsim(z, r)

〉
r

, (45)

and btot(z) = bBHR(z) + bpert(z), (46)

where bBHR(z) incorporates mix from the unresolved modes, and bpert(z) incorporates mix from
the resolved modes. In the case of no resolved modes we expect btot(z)→ bBHR(z).

In the thin-layer data, the separation of scales between the carrier wave and the surface rough-
ness is so large, we must ask if it is valid to fold all the perturbation modes into the model or if we
must resolve the carrier directly to replicate the experiment behavior. Figure 21 shows examples
of simulations of the thin-layer experiment using both a no resolved mode (flat) and carrier wave
resolved (sine) initializations. For both cases we plot the sample bsim(z, r) and ρsim(z, r) outputs
during the 1st shock (21 ns) and reshock (27 ns) phases. In this case ρsim(z, r) encompasses all
materials in the simulation, not just CHI. We also plot ρbBHR(z) and ρbpert(z) values on their
corresponding images, and ρbtot(z) on all images for reference.

In the case of the flat initialization, we find that at 27 ns ρbtot(z) ≈ ρbBHR(z) but there is
still a small ρbpert(z) contribution. The ρbpert(z) contribution is due to the slight observed layer
curvature, which is more prominent at 21 ns when the layer curvature is larger and similar to what
we observe in the data. The ρbpert(z) also sees spikes from the shocks in the foam, but we do not
expect to see similar spikes in the data since the opacity and the noise in the CH foam is too large.
In the case of the sine initialization, we find that ρbpert(z) ∼ ρbBHR(z) even at 27 ns since the
carrier perturbation growth is significant.

Comparing the flat and sine initializations, we find that both give very similar values of ρbBHR(z)
at both times. At 21 ns, the shape and amplitudes of both the ρbBHR(z) and ρbpert(z) curves are
very similar, so there is little difference between the cases. However, at 27 ns ρbtot,sine(z) ∼ 2 ×
ρbtot,flat(z) due to the significant ρbpert(z) contribution. In the experiment, the carrier perturbations
persist even to late-times and are a significant contributor to b, indicating both that we cannot
neglect ρ(z)bBHR(z) and the sine initialization is a better match to the experiment.

5.2.2 Comparing s0 initial values

Because we operate BHR in a the highly transient ICF/HED regime, with initially solid compo-
nents, relating the initial condition s0 to physical roughnesses of the true experiment is a relatively
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Figure 22: Comparison of 1D experiment and simulated ρ and ρb for a variety of BHR initializations,
including variations of both s0 and BHR version. Simulated density field included both the CHI
and CH foam. Comparison presented at a single sample time for plot legibility.
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Figure 23: Comparison of 1D experiment and simulated ρ and ρb for a variety of BHR initializations,
including variations of both s0 and BHR version. In contrast to Fig. 22 the simulated density field
used here only included the CHI with an assume 100 mg/cc background density, and we included
a simulated 30 µm pinhole blur.
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Figure 24: Simulated ρ and ρb using BHR3 for several values of s0 at comparable 1st-shock and
reshock data timings, similar to the experimental data in Fig. 20.
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underdeveloped research program, compared to the century-plus history of applying RANS models
to traditional fluids. Rather than assume one specific s0, we present here results from three s0,
each roughly proportional to the roughness scales which may be present in the system.

We show this output against in Figures 22–23 at late time (t = 21 ns). While none of the data
is currently a perfect match, we can identify trends. The left columns show density, and the right
b. We see that there is an asymmetry to the layer in the b variable between the first and second
shocked sides which model factors (BHR 3 vs 4) are sensitive to. At this late time, BHR4 shows
enhanced effects of asymmetry. The important thing to notice is that the density width (which is
likewise still not a perfect match) would not by itself be an effective indicator of which model to
prefer. The layer width can be loosely controlled by s0. In addition to being very close between the
two models, it is clear that any discrepancy could be accounted for with a minor change in s0. The
b plots, by contrast, show strong dependence on both model form and the exact initial conditions
of the calculation. This indicates the necessity for making these higher order measurements to
distinguish between these higher-order differences in proposed models.

In Figure 22, we also show one output with a preliminary computational version of the LANL
Modal Model (MM) — for the parameters given it, we found that it essentially reproduced s0 =
1 µm. We should recall that we cannot distinguish the MM between s0 in its most general form,
since any output the MM produces can be in principle captured and fit to some combination of
s0 and other initial conditions, but we can seek experiments where the MM scales with initial
conditions (i.e. imposed roughness) in some sensible way.

Figures 22–23 represent two different methods of post-processing the same simulations, using
different material contributions to the density map. Figure 22 uses the density map containing all
the materials in the mixing region, in this case both the CHI tracer and the surrounding CH foam.
We can see this most notably in the shocked foam regions in the ρ plots, where the profiles have long
tails surrounding the central peak of the mixing layer. In contrast, Figure 23 uses the density map
containing only CHI, corresponding to our assumption that the CHI opacity is so much greater that
the surrounding foam that we are only seeing CHI in the final experimental density map. However,
in the experimental profiles we do see a baseline background density from the foam indicating that
the density of the multiply-shocked foam is large enough to be non-negligible in the measurement.
We do include this empirical background density in the CHI-only post-processing, since otherwise
we would incur a divide-by-zero error when calculating b far from the layer. The two methods
of post-processing represent limits on material density contribution to experimental measurement,
between our assumption that we only measure the CHI density and the inclusion of the CH foam
density. Since our experimental density calculation assumes CHI opacity in the form of kCHI, the
significant CH features in the simulation show up as much small density features in the analyzed
data, such that we underestimate the CH density. Thus, including the full CHI and CH density
contribution when post-processing the simulation overestimates the CH signal compared to the
experiment and forms an upper limit on the CH contribution to the measurement. The importance
of understanding the background material contribution to the measurement shows up both in the
ρ and ρb curves shapes and amplitudes. In the ρ curves including CH adds background features
and causes an overestimation of CHI-layer density. In the ρb curves, including CH essentially adds
an overall background offset and a gradient at the layer edge that causes a smaller peak value of
b. The non-negligible difference between the post-processing cases indicate that we should move
to synthetic radiography for a more accurate comparison to the experiment, as part of our future
work.
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5.2.3 Initial comparison of data and simulation

Comparison of our 1D experiment and simulated ρb curves indicated that our analysis is producing
a metric that we can use to constrain model performance. We output the simulation results at
experiment relevant times, where the data was taken at t = 14, 18, 20.5, 22.5, 25, 27 ns. We focus
on the t ≥ 20 ns cases here since that is where the data sets are most complete, and we expect the
see the increase in mixing due to reshock at ≈ 23 ns. The simulation outputs are increment by
1 ns, since we do not observe significant mixing evolution at < 1 ns intervals in the simulations or
experiments. In later analysis this could be refined to a more precise as-shot timing agreement, if
the ρb identifies features evolving at the < 1 ns time scale.

Examining Figures 22–23, we can see that there is agreement between the data and simulated
ρb curve morphology. All the ρb curves have two-peaked structure, with each peak corresponding
to the edge of the mixing layer. We also find the amplitude of the data and simulated curves are
at least in ballpark agreement, where changes in s0 can span from the simulation have a larger
to a smaller profile amplitude than the experiment. We also find that the use of only the CHI
simulated density is in better agreement with experiment, where the trough between the peaks is
more pronounced, indicating that our assumption that the density fluctuation in the CHI tracer
dominate the measurements is at least reasonable.

Similarly, we can compare time trends between the data in Fig. 20 and the simulation in Fig. 24,
and we find that the s0 = 16 µm case starts to reproduce some of the data trends. In the s0 = 16 µm
case we see higher profile amplitudes during the 1st-shock phase, including the peak asymmetry
due to shock curvature. Then we see the peak amplitudes decay as mix increases after reshock.
Perhaps most telling, we do not see as prominent an increase in mixing after reshock for the other
s0 cases, indicating that our data can distinguish between appropriate initializations of the model.

5.3 Considerations for interpreting b

The emergence of bperturbation from analysis of simulation outputs emphasizes how critical it is
that we understand how statistical averaging works in both the data and the model before we can
make a meaningful comparison between the two. In example it serves as a cautionary point about
how treating either the data or simulation analysis in a purely prescriptive manner may lead to
comparing two quantities that we can label ‘b =’ but that are not measuring the same metric. To
make this point clearer, we can use this example to demonstrate how material density information
is actually stored in both the data and the xRAGE and BHR models.

The experimental radiographs are effectively a slice of the complete density field of the system.
The data contains information about both the bulk flow and the perturbed flow stored in the
same field and realized in the same way, as changes in transmission in the radiography. Thus, any
averaging we do in the data contains information about both bulk and fluctuating density.

Recall that in the simulations, the density fields only contain information about bulk flow.
Fluctuating quantities are not calculated directly, but rather as statistical moments of an assumed
fluctuating field. So the bulk flow and the fluctuating flow are realized separately, where the bulk
flow is output directly as a density map but the fluctuating flow is realized in a statistical sense as
a separate output. So b as a BHR parameter only encompasses parts of the flow not resolved by
xRAGE. Looking at our simulation example:

• Case 0: The flat initialization does not explicitly seed any of the modes, so BHR handles the
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evolution of all the modes in the system. Thus, bBHR in this case encompasses all density
fluctuations that deviate from just being a flat layer. This forms the limiting case where
ball modes = bBHR.

• Case 1: The sine initialization explicitly resolves the carrier wave but not any other modes.
So BHR only handles the evolution of the noise modes in the system while the large mode is
left to evolve separately. In this case ball modes = bBHR + bcarrier.

• Case n: We can imagine expanding this process to explicitly resolving n modes in the simu-
lation. At that point, the general form of the comparison becomes ball modes = bBHR + b1 +
. . . + bn.

• Case fully resolved/no model simulation: In the case where we can fully resolve all evolving
scales past the dissipation scale, then we no longer need a model. This forms the other
limiting case of ball modes = b1 + . . . + bn.

We can do something similar for understanding our data analysis. Our current analysis makes
no assumptions about structure form that would lead to distinguishing between modes, so our cases
look like:

• Infinite resolution measurement: Assuming perfect spatial and temporal resolution, then
our measurement would capture density information at all applicable scales, and we get the
limiting case of bdata = ball modes.

• Finite resolution measurement: In the case of a real HED experimental system there will be
a lower limit on feature resolution that is generally bigger than the smallest evolving scale in
a turbulent cascade.

Thus, bdata = bstructures ≥ resolution limit. Relating this back to the complete fluctuation informa-
tion, ball modes = bdata+bstructures < resolution limit. Putting this all together, our actual comparison
looks like

bdata + bstructures < resolution limit = bBHR + b1 + . . . + bn. (47)

Thus, for a reasonable comparison we need to design an experiment and simulation pairing such
that

1. bdata � bstructures < resolution limit,

2. bBHR ≥ b1 + . . . + bn,

3. and that the choice of how many modes to resolve in xRAGE makes sense and performs well
for the system application.

It is worth noting that while our current analysis specifically did not make assumptions about
structure form, that doesn’t mean that we couldn’t choose some form of averaging using geometric
assumptions. For example, it might be possible to only select information from along a region
at the layer surface. Such averaging over that region would effectively only average over modes
smaller than the carrier mode. In this case, if ball modes = bBHR + bcarrier, then we may be able to
approximate bdata = bBHR.
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Similarly, we could make some assumptions about structure scale size in the analysis. By either
filtering or thresholding an image, we may be able to isolate smaller and larger scale data such that

bdata = bstructures ≥ limit + blimit > structures > resolution. (48)

In this case, again if ball modes = bBHR + bcarrier, then we may be able to parse the data such
that bstructures ≥ limit = bcarrier.

In conclusion, while we must be cautious about understanding what b is describing in both the
simulations and the data in order to make a meaningful comparison, that same flexibility may open
many avenues for isolating specific physics in our models. This flexibility is the true advantage of
expanding our analysis to use the full 2D nature of our data.

6 Summary

We have completed development of a method to extract density fluctuation information out of HED
radiography, and can use this information to calculate comparable value of a variance-like moment
b (density-specific-volume covariance) for constraining the performance of our BHR turbulent mix
model in HED. The development of this measurement is part of an ongoing effort to expand the
data analysis for HED instability experiments beyond coarse large-scale measurements, such as
the traditional mix-width, to incorporating information about fine structure mix. Historically we
have been prevented from measuring small-scale information by limitations in the radiography, but
improvements in imaging resolution and target fabrication advances have allowed observation of
fine-structure growth and opened opportunities for extracting higher-order mixing information.

Our technique for measuring b is an extension of earlier work [1] demonstrating that a useful
approximation of b could be extracted from radiography data. The technique was demonstrated on
sample data, where it could identify mixing from primarily large-scale instability features due to the
geometry of the mixing region. We take advantage of the development of localized target doping to
resolve finer mixing structure to improve on the previous demonstration of measuring b. However,
since we are now incorporating small-scale density fluctuation information this increases the rigor
with which we must process that data before we can claim we have made a density fluctuation
measurement.

We have demonstrated a method for quantitative radiography for the NIF thin-layer Mshock
platform, including a rigorous analysis of the removal of system artifacts that could contribute an
artificial fluctuation measurement that could contamination the small-scale mixing analysis. We
convert the radiography images to transmission maps using iteration between models of the area
backlighter and the background material. In this process, we also remove axial backlighter variation
and establish and uncertainty due to both the backlighter fit and approximations in the material
model. Once we have a transmission map, we use information about the target component material
and geometry to calculate a 2D tracer material density field in the mixing region, and remove radial
backlighter variation in the process.

From the density map we have developed methods for calculating both 1D and 2D ρ and b
quantities from a single radiograph, where the 2D analysis is possible due to the periodicity of
a large-mode incorporated in our seeded perturbation. Thus, from the quantitative radiography
we can extract two different quantities to compare to our models from a single image, which is
significantly more information than the historic single scalar mix width measurement. Both the 1D
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and 2D b measurements yield prominent features corresponding to mix at the edges of the mixing
layer, and these features evolve over time in ways that are consistent with increasing late-time mix.
We do find that calculating b is primarily sensitive to choices in noise removal, since we can now
observe density fluctuations down to the image noise scale. However, for reasonable choices of noise
filtering we find that the general morphology and trends of the measured b remain consistent.

We find that we have enough qualitative similarity between the experiment and simulated b
to begin to constrain model initialization choices. Initial comparisons of 1D b measurements to
simulation has already lead to an examination of what modes must be incorporate into the model
and what must be resolved in the simulations when there are large separations of scale in the
perturbation initial conditions. To address this question, we had to develop an analogous method
of analyzing simulation outputs that incorporated both the b fields from the turbulence model and
the bulk ρ from the hydro simulation. Model initialization geometry studies found that resolving
the large-mode did a better job of matching the experiment, and that not including the bulk ρ
information would significantly underestimated the comparable total b from the simulation and
not capture some of the layer dynamics, such as curvature. We have begun model initialization
parameter studies including varying turbulent scale length s0, comparing to both BHR3 and BHR4,
and using the Modal Model to initialize BHR3. We do find that we have enough qualitative
similarity between the experiment and simulated b to begin to constrain model initialization choices.
Early comparisons also find that larger s0 is necessary to reproduce the experimentally observed
decrease in 1D b profile amplitude at late-times indicating of increasing mix post-reshock.

The question of how to model systems with large separation of scales has lead to larger discus-
sion of the subtleties of choices in ensemble averaging and equivalency between quantities we can
calculate from the data and quantities incorporated in the model. While these questions are not
necessarily easily resolved, especially in low-data rate systems, that we can have the discussion at
all is a testament to the advances in HED data’s ability to inform our models.

7 Future Work

Our initial analysis focused on qualitatively assessing whether or not our b measurements yielded
something relevant for constraining the BHR mix model in HED. Now that we have established
that we get good qualitative agreement between the data and the model outputs, we can advance
to more quantitative comparisons.

In order to make a quantitative comparison, we must improve the post-processing of our sim-
ulation results. As illustrated between Figures 22 and 23, whether or not the background foam is
included in the simulated density fields changes the amplitude of bpert and thus btot. The next step
is to convert the simulated density fields into a synthetic radiography to assess how much of an
impact we expect the CH foam to make the b calculations. This would also help assess the strength
of our assumption that the only observed density fluctuations in the experiments are due to the
CHI. The other main choice we make that we know the data analysis is sensitive to is the choice
of noise filter. Once we have a synthetic radiograph, we plan to add a noise profile derived from
experiment and examine the impact of noise and filtering.

We can add a conversation of mass constraint to the density map calculation. Since the tracer
material does not experience either lateral or radial expansion, all material expansion occurs in the
axial direction captured in the image. Thus, we can assume a conversation of mass of the tracer
material within the imaging FOV. We can then enforce that the calculate total density present
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in our imaging region is the same as the preshot density. This method would add an additional
correction to uncertainties from our BL and material models.

We can investigate some trends in the b curve evolution immediately, such as measuring the
profile width and peak amplitude evolution. Even if the simulations are not currently an exact
match for the quantity amplitudes, we can investigate whether or not we see similar time trends
in order to understand the mix evolution. For example, both the layer expansion and the b peak
decay post-reshock are indicators of increased mix in the system and examining their dynamics
could give us a measurement of differences in how fast mix is increasing across the different data
sets.

This manuscript mainly focused on part of the NIF thin-layer Mshock data set, but we still need
to examine the 120-µm thick layer data and compare it to the 80-µm thick layer data to investigate
layer thickness effect on mode feedthrough. Similarly, we have also focused on the 1D b calculations
and need to examine what quantitative information we can extract from the 2D b calculations.

We have begun studying methods for changing the average to distinguish between contributing
phenomena in our b calculation. We have begun investigations of removing the layer curvature con-
tribution from the data by sectioning the 2D image, and lining up the layer edges before calculating
b. This may gives a way to distinguish between quantities equivalent to bBHR and bpert in that
part of the data. Similarly, we may be able to use machine learning to isolate contours of different
mixing regions in the data, such that we can separate the surface mix from the carrier wave mix.
This would be an extension of a machine learning technique developed to identify mixing contour
for mode frequency analysis in gradient density systems.

Finally, we would like to extend this analysis to other HED instability platforms. We have begun
work implementing our b analysis on the LANL Omega-EP ModCons (modal initial conditions)
data, as well as the Sandia/LANL Z-machine Double Cylinder data. In fall of 2021, we plan to
begin implementing the analysis on the NIF successive-shock Mshock data as well.
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